
A Fermi National Accelerator Laboratory 

SUSSEX-AST 90/6-l 
FNAL-PUB-90/62-A 

(May, 1990) 

Baryogenesis in Extended Inflation. I. Baryogenesis 

via Production and Decay of Supermassive Bosons 

John D. Barrow,’ Edmund .J. Copeland, Edward W. Kolb,’ and Andrew R. Liddle’ 

‘Divi,ision of Physics and Astronomy 
University of Sussez, Brighton BNI 9QH U.K. 

lNASA/Femiiab Astrophysics Center 
Fermi National Accelerator Labomtory 
Batavia, nlinois 60510-0500 U.S. A. 

and 
Department of Astronomy and Astrophysics 

Enmko Fermi Inetitute, The University of Chicago 
Chicago, Illinois 60697 U.S.A. 

Abstract 

We consider baryogenesis occurring during the thermalization stage at 

the end of extended inflation. In extended itiation, the Universe passes 

through a first-order phase transition via bubble nucleation; inflation 

comes to an end when bubbles collide and their collisions convert en- 

ergy stored in the bubble walls into particles. This naturally provides 

conditions well out of thermal equilibrium in which baryon number violat- 

ing processes may proceed; we estimate the amount of baryon asymmetry 

which may be produced this way. The avoidance of a monopole or domain- 

wall problem can also be ensured and isothermal density perturbations 

may arise as a remnant of spatial variation in the baryon asymmetry. 
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I. INTRODUCTION 

Recently the spirit of the orginal inflationary cosmology1 has been revived in the con- 

text of “extended” inflationary models by La and Steinhardt.’ In such models, the 

Universe is trapped in a false vacuum state as it cools from high temperatures; the 

energy density of this false vacuum then drives a rapid expansion in the scale factor 

of the Universe, solving a variety of cosmological conundrums. Inflation is ended by 

the quantum-mechanical process of formation of bubbles of the true vacuum via tun- _ 

nclling; bubbles form with a characteristic size determined by microphysics3 (provided 

gravitational corrections are small). These bubbles then expand at the speed of light, 

eventually colliding with adjacent bubbles. The percolation of these bubbles then 

brings the idationary era to an end. The original “old inflation” scenario of Guth’ 

was flawed by what became known as the “graceful exit” problem: regions trapped 

in the false vacuum state expand exponentially; the expansion generically overcomes 

the decay to the true vacuum state and percolation of the Universe by true-vacuum 

bubbles never occurs.’ Extended inflation circumvents this obstacle by considering 

modified gravitational theories (such as the Jordan-Brans-Dicke theory) in which 

the gravitational constant may vary. In such theories the inflationary expansion is 

a rapid power-law rather than exponential, and the exponential bubble+ucleation 

rate will always eventually overcome the expansion and bring the inflationary era to 

a satisfactory end. 

As pointed out by Weinberg5 and by La, Steinhardt, and Bertschinger,’ the orig- 

inal extended inflation model based on a Jordan-Brans-Dicke theory fails because 

bubbles nucleated early in inflation have time to grow to large sizes. Such bubbles 

do not have time to thermalize before radiation decoupling (a lower bound on the 

thermalization time being easily obtained simply from causality) and would cause 
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unacceptably large distortions in the microwave background. To resolve this con&t, 

several more invoived models have been proposed,‘vs*‘*” with the common theme of 

arranging that the production of bubbles early in inflation is suppressed. This ap- 

pears to be a necessary ingredient for a successful extended inflation model, and here 

we shall assume, without tying ourselves down to a particular model, that the vast 

majority of bubbles are produced in a rapid burst right at the end of inilation. These 

bubbles have little time to grow before the inflationary era is brought to an end by 

percolation. A detailed examination of the dynamics of extended inilationary models 

is given in Ref. 11. We note also that it is simply the falling Hubble expansion rate 

that enables the phase transition to proceed to completion in extended inflationary 

models and similar conclusions could be drawn in any power-law inflationary modePa 

in which a fust order transition occurs. Thus the picture we shall present is more 

general than the “extended” inflationary universe model which we use to provide a 

context. 

In this paper we will not address problems in the dynamics of the bubble nucleation 

rate, and only assume that some satisfactory explanation will result in an acceptable 

bubble distribution at the end of extended inflation. Rather, we wiU concentrate 

on the inflaton sector of the theory, and investigate whether an acceptable baryon 

asymmetry can be produced after extended inflation. 

One of the most important results in particle astrophysics is the development of 

a framework that provides a dynamical mechanism for the generation of the baryon 

asymmetry. Before reviewing the basic ingredients necessary, it is useful to quantify 

exactly what is meant by the baryon asymmetry. The baryon number density is 

defined as the number density of baryons, minus the number density of antibaryons: 

no E ns--ng. Today, rt~ = R* = 1.13xlO-s(52~h*) cm-s, where h is Hubble’s constant 

in units of 100 km s-l Mpc-‘. Of course, the baryon number density changes with 
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expansion, so it is most useful to define a quantity B, called the baryon number of 

the universe, which i.c the ratio of the b. .-m number density to the entropy ;:sity 

s. Assuming thre :cies of light neutr us, the preser ntropy ( :ity is > 370 

cmm3, and the ba. : number is 

B = 3.81 x 10-e(Ci~h’). (1.1) 

Primordial nucleosynthesis provides the constraint 0.010 5 Rnhs 5 “.017,i3 -bich 

implies B = (3.81 to 6.48) x 10-i’. So long as baryon number violating processes . 

are slow compared to the expansion rate and no entropy is created in the expansion, 

B is constant. 

A key feature of inflation is the creation of a large amount of entropy in a volume 

that was at one point in caused contact. The creation of entropy in inflation would 

dilute any pre-existing baryon asymmetry, so it is necessary to create the asymmetry 

after, or very near the end of, inflation. In order for the baryon number to arise after 

inflation in the usual picture, where CPT invariance and unitarity hold, it is necessary 

for three criteria to be satisfied: baryon number (B) violating reactions must occur, 

C and CP invariance must be broken, and non-equilibrium conditions must obtain. 

There are two standard scenarios for baryogenesis: r’ In the first picture the baryon 

asymmetry is produced by the ‘<out of equilibrium” B, C, and CP violating decays 

of some massive particle, --tile the second scenario involves the evaporation of black 

holes’s We shaU discuss the role of the latter mechanism in a second paper on this 

subject. 

In the out of equilibrium decay scenario, the most likely candidate for the decaying 

particle is a massive boson that arises in Grand Unified Theories (GUTS). In the 

simplest models, the degree of C and CP violation is larger for Higgs scalars than for 

the gauge vector bosons, so we wilI assume that the relevant boson is a massive Higgs 
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partide. This Higgs is also taken to be different from the inflaton. The Higgs of GUTS 

naturally violate B. The origin of the C and CP violation necessary for baryogenesis 

is uncertain. It is practical simply to parameterize the degree of C and CP violation 

in the decay of the particle. To illustrate such a parameterization, imagine that 

some Eggs scalar fl has two possible decay chanels, to final states fi, with baryon 

number Br, and fs, with baryon number 8s. Consider the initial condition of an 

equal number of fl and its antiparticle, j?f. The H’s decay to final states fi and fs 

with decay widths l?(H -+ fi) and l’(H -+ fs), while the ii’s decay to final states 

fi and .?s with decay widths I’(B + fr) and l?(H + i;). The decays produce a net 

baryon asymmetry per H-Ii given by 

!J(H + fi) - I?(.!? * A) 
?p l-H ’ (l-2) 

where Pa is the total decay width. Of course c can be calculated if one knows the 

masses and couplings of the relevant particles. Reasonabie upper bounds for c are in 

the range of 10-s to 10-s, but it could be much smaller. For more details, the reader 

is referred to Ref. (16). 

The non-equilibrium condition is most easily realized if the particle interacts 

weakly enough so that by the time it decays when the age of the Universe is equal to 

its lifetime, the particle is nonrelativistic. Then the decay products will be rapidly 

thermaLed, and the “back reactions” that would destroy the baryon asymmetry 

produced in the decay will be suppressed. 

In most successful models of new inflation the reheat temperature is constrained to 

be rather low. This is due to the fact that new inflation requires flat scalar potentials 

in order for inflation to occur during the %low roll” of the scalar field toward its 

minimum. In order to maintain the flatness of the potential, the inflaton field must 

be very weakly coupled to aII fields so that one-loop corrections to the scalar potential 
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do not interfere with the desired fla: .:ss of the potential. The feeble coupling of the 

inilaton to other fields means that tLL process of converting the energy stored in the 

scalar field to radiation (“re”heating, IS inherently inefficient. Although it is possible 

to overcome this difficulty in sever: Tays, it remains a concern for 3w inflation. 

The thermalization process of bL ie walI collision at the end of extended inflation 

provides a natural arena for baryogenesis in the early Universe, as it automatically 

creates conditions far from thermal equilibrium, exactly as required for B, C, and 

CP violating GUT processes to produce an asymmetry. The aim of this paper is to 

investigate how the baryon asymmetry produced at the end of extended inflation can 

be estimated. 

In this, the first paper of two, we consid::: the prods .m in bubble-wall collisions 

of supermassive baryon-number violating bosons whose decays generate the baryon 

asymmetry. In the second paper we consider the further possibility that the bubble- 

waU collisions may produce a significant density of black holes, which then decay via 

the emission of Hawking radiation. These decays may lead to the radiation of more 

baryons than antibaryons, providing an alternative mechanism for the generation of 

the baryon asymmetry. 

In the next section we will describe the Universe at the end of extended inflation. 

In particular we wilI derive the physical parameters that describe the true-vacuum 

bubbles. In Section III we wilI discuss baryogenesis from the decay of Higgs particles 

produced in the bubble walI collisions. The final section discusses our results. 
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II. THE END OF EXTENDED INFLATION 

Most of the work on extended inflation has concerned the gravitation sector of 

the theory, which will not concern us. Our only assumption about the gravita- 

tion sector is that the parameter that determines the efficiency of bubble nudeation, 

EN(~) = r~(t)/El’(t), where rN is the nucleation rate per volume and His the expan- 

sion rate of the Universe, has a time dependence that suppresses bubble nudeation 

early in infiation, then rapidly increases so inflation is brought to a successful con&- 

sion in a burst of bubble nucleation. This will be the case so long as H(t) falls as t 

increases. Hence we see that it could occur in any power-iaw inflationary universe” 

driven by an appropriate phase transition. In fact, our experience with “new” and 

“chaotic” idation, as well as inflation driven by higher-order curvature terms in 

the gravitational Lagrangian,“JsJs, indicates that we can have “intermediate” and 

hyperinfIation where the s&e factor of the Universe increases as exp(At”), with A 

constant, and n < 1 or n > 1 respectively. When n > 1, as is possible in some 

quadratic Lagrangian inflationary scenarios,20 we v4.I have H > 0 and a phase transi- 

tion couId not complete even if the effective potential allowed one to occur. However, 

when 0 < n < 1, as considered in Ref. 18, the phase transition could proceed to 

completion just as in the power-law and extended inflationary models. 

Here we shall refer to the extended inflationary model for definiteness and we shall 

be concerned with the inflaton sector of the theory. So far the only restriction on the 

inilaton sector has been that it must result in a first-order phase transition. Here, we 

examine the results of requiring that it must also produce a baryon asymmetry. 

In order to keep our discussion as general as possible, we wiI.I not specify any 

particular inflaton model, but rather describe the salient features of the potential in 

terms of a few parameters that can be easily identified with any scalar potential that 
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undergoes spontaneous symmetry breaking. We denote the inflaton field throughout 

to be (r, which has a potential of the general form suitable to provide a first order 

phase transition necessary for extended inflation. The parameters of the potential 

are assumed to be: 

1. CT~, the energy scale for SSB, i.e., the VEV of the scalar field. 

2. X, a dimensionless coupling constant of the inflaton potential. We will assume 

that the potential is proportional to X. 

3. <, a dimensionless number that measures the difference between the false and 

the true vacuum energy density via pv = tXu,l. t must be less than unity for 

sufficient itiation to occur; this is also precisely the condition that allows the 

thin-wall approximation (discussed below) to be made. 

From these few parameters we can find alI the information we require about the 

bubbles formed in the phase transition .s For instance, an important parameter is 

the size of bubbles nucleated in the tunnelling to the true vacuum. In the thin-wall 

approximation, the size of a nucleated bubble is given by 

Rc - (&4%o)-~. (2.1) 

i 
Bubbles smaller than this critical size wilI not grow, and it is exponentially unlikely 

to nucleate bubbles larger than this critical size. We will assume that a.U the true- 

vacuum bubbles are initially created with size R = Rc. 

Another crucial parameter is the thickness of the bubble wall separating the true- 

vacuum region inside from the false-vacuum region outside the bubble. For the po- 

tential described above, the bubble wall thickness is 

A N (X”%e)-‘. (2.2) 



Note that the ratio of the bubble thickness to its size is A/Rc - t; as advertised, if 

f < 1, the thin-wall approximation is valid. 

Finally, the energy per unit area of the bubble wall is 

At the end of extended inIlatioa all of the energy is in these bubble walls. 

We must have some idea of the size of bubbles at the end of inflation, when 
:_ 

bubbles of true Mcuum percolate, collide, and release the energy density tied up in 

the bubble walls, so creating the entropy of the Universe. The bubbles of true vacuum 

are nucleated with size A = Rc. After nucleation the bubble will grow until it collides 

with other bubbles. We now show that the size of the bubble at the end of extended 

ir&tioa is still approximately i&. 

Consider fust the growth of the bubble in comoving coordinates. If a bubble 

is nucleated with cmndinnte radius P at time tmo, then at some later time t the 

coordinate radius of the bubble will have grown by an amount Ar(t, tNUC), given by 

Ad6 hc) = 1;. -$j, 

where a(t) is the Robertson-Walker scale factor. Typically in extended inflation 

a(t) grows as a power-law in time, say a(t) cz P, p > 1. If this is true, then 

Ar(t,tNuc) - tN”C- -t’-, which approaches an asymptotic value Ar(oo, tN”C) N 

tNUC’-P. Clearly bubbles audeated at late time (large tNUC) will have little growth in 

coordinate radius, and any increase in the physical size of such a bubble is due solely 

to the growth in the scale factor between the time the bubble is nucleated and the 

end of idatioa. 

The physical size of a bubble nucleated at time tNUC is related to its coordinate size 

by R(tNUC) = r(tr+ue)a(tNuo) = &. If there is negligible growth in the coordinate 
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size of the bubble between the &UC and end of inflation tEND, then at the end of 

inflation the bubble will have a physical size 

R(tEND) = R = T(tNUC)a(tEND) = RC[a(tEND)/U(tN”c)]. (2.5) 

With the assumption that successful extended iailatioa will have a burst of bub- 

ble nucleation at the end of inflation, and that there is not much growth in the 

size of a typical bubble between the time of nucleation and when it collides with 

other bubbles at the end of inflation, for a first approximation we will assume that 

at the end of extended inflation all bubbles have the same size, R = a&, where 

Q = a(tEND)/a(tNUC) - O(1). In the concluding section we will discuss possible 

implications of reiaxiag this assumption. 

We conclude this section by a description of the Universe at the end of extended 

inflation. To a good approximation the Universe is percolated by bubbles of true 

vacuum of size R = aRc, with alI the energy density residing in the bubble walls. 

We have spoken of the “end of inflation” as if it was a well-defined time, but in fact it 

is not. We simply define tne end of idatioa to be when the Universe is first percolated 

by bubbles of true vacuum. The “tilling fraction” of the Universe at percolation is 

some fraction fv. Based upon Monte-Carlo simulations, it is expected that fv - 0.3.r1 

The final step is the release of this energy into radiation via bubble-wall collisions. 
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m. BARYOGENESIS BY DIRECT PRODUCTION 

OF SUPERMASSIVE BOSONS 

Let us concentrate on a single bubble of radius R. The total mass of the bubble is 

M = 47qR= - 4d’b;R=. (3.1) 

The collisions of the bubble walls produces some spectrum of particles, which are 

subsequently thermalized. The mean energy of a particle produced in the collision 

is of order of the thickness of the wall, (E) - A-‘, and hence the mean number of 

particles produced in the collisions is 

(N) 2: M/(E) - 4xA~%~Rz. (3.3) 

In general, the bubble colkions will produce all species of particles, at least alI species 

with mssses not too large compared to (E). In the following we will assume that 

this is the case for the baryoa-number violating Higgs particles. If the Higgs mass 

exceeds A-’ by a significant amount, we can expect some suppression, presumably 

exponential, in the number of Higgs formed. This possibility wilI be discussed at 

the end of this section. For now, we simply parameterize the fraction of the primary 

annihilation products that are supermassive Higgs by a fraction fa. The typical 

number of Higgs particles produced per bubble is 

(NE) - f&V) - 4afaAX”?$R1. (3.3) 

We wilI now assume that the only source of the supermassive Higgs is from the 

primary particles produced in the bubble-wall collisions. This will be true if the 

reheat temperature, TM, is below the Higgs mass. (Note that throughout this paper 

we have set the Boltzmana constant equal to 1.) The validity of this approximation 

will also be discussed at the end of this section. 
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The EIiggs particles produced in the wall collisions decay, producing a net baryoa 

asymmetry E per decay, where c is given in Eq. (1.2). Hence, the excess of baryoas 

over aatibaryoas produced from a single bubble, Nn = Ns - N6, is given by 

NE = @a) - 4aef&R=, (3.4) 

where we have substituted in for the bubble thickness from Eq. (2.2). This results in 

a baryoa number density of 

ng = fv N8/(4rR3/3) = 3efvfau;R-‘. (3.5) 

We must now calculate the entropy generated in bubble-wall collisions. As stated 

above, the mazs of a bubble is M = 4nu~X’~“RR’. Thermnlizatioa of the mass in 

the bubble walls will redistribute this energy throughout the bubble, resulting in a 

radiation energy density (recall that at percolation, a fraction fv of the Universe is 

taken up by bubbles of radius R) 

pa - fvM/(4rR3/3) - 3fvX”%;/R. (3.6) 

We may now express the reheat temperature to the radiation energy density via 

g.n2 
PR = 3. -T&f, (3.7) 

where 9, is the effective number of degrees of freedom in all the species of.psrticles 

which may be formed in the thermalizatioa process. From this we obtain the entropy 

density, S, produced by the thermalizatioa of the debris from bubble-wall collisions: 

2 
s = gg.T& - 2.3 g,‘l~f~14X3/~~~f4R-31~~ 

(3.8) 

From Eqs. (3.5) and (3.8) we can calculate the baryon asymmetry B as 

B E Q/S - ,f;~‘fag;‘/‘X-3/s (coR)-‘l’. (3.9) 
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As stated above, a successful extended idatioa model is expected to have the 

feature that a typical bubble does not grow significantly between nucleation and 

percolation, so we can assume that the bubble size at percolation is R = aRc = 

a(&W a,,)-‘. The baryoa asymmetry B is then given by 

B = ef;j4fH a- ‘14g;‘14~-‘14p4, (3.10) 

Provided the mass of the Higgs is less than TM, f~ is just gn/g., where ga is the 

number of Higgtidegrees of freedom. Substituting this in gives the final result 

B = ,f:14gaa-‘f’S;=f1X-‘f’~‘f4. (3.11) 

This allows us to make numerical estimates of B based on sample values of these pa- 

rameters. Notice that the dependence on both A and t, which are the two parameters 

on which the idaton’s potential depends, is very weak, as is that on the filling factors 

fv and a. The important contributions are the degree of asymmetry in CP violating 

Etiggs decays and the number of particle. species available for production in the wall 

collisions. Numerical estimates for B based upon this expression will be made in the 

concluding section. 

We now elaborate upon the implications of two assumptions of our scenario. The 

first assumption is that the mass of the Higgs is not much larger than the typical 

energy of particles produced in bubble wall collisions, i.e., ran 5 A-’ = Ar/s~,,. If 

we take GUT theories as a guide, the Ffiggs mess is of order ~~‘~o, where XII is 

the coupling constant of the quartic term in the EIiggs potential coupling Q and H. 

Clearly XT must not be too much larger than Al/s, or there will be a large supressioa 

in f,q. 

The second assumption is that the reheat temperature is less than the mass of 

the Higgs, so that thermal production of H is not important. This implies that 

ma > X’f’g;‘frf:l’a-llrE1f4u~. Ag sin assuming that ma = xzs~c, the requirement 
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becomes J,= > J,‘/Q;‘l’ f” 1/2a-l/~ 10 < If this inequality is not satisfied, then H’s 

will be copiously produced in the thermalization process and baryogenesis will follow 

the standard out of equilibrium decay scenario rather than the mechanism we have 

outlined above. 

The compatibility and naturalness of these two requirements wilI be discussed in 

the concluding section. 

Iv. DISCUSSION AND CONCLUSIONS 

Here we examine some typical numbers for the baryon asymmetry which may be 

obtained from Eq. (3.11), in the light of the experimental limits discussed in the 

introductory section setting B at around lo- to. The two ftlling factors fv and a both 

appear to the quarter power, and hence as they are both of order one, they can be 

dropped. The number of Higgs degrees of freedom, sir, is expected also to be of order 

one, with simply one degree of freedom for each polarization in the case of a single 

Higgs and further degrees in the case of a doublet or more of Higgs particles. The 

total number of degrees of freedom 9. is expected to be of order 100-800 in a grand 

unified theory. ss This implies 
:; 

B N 1r2c ; 0 
l/4 

. (4.1) 

The remaining parameters e, X and [ are less certain, with some dependence on the 

particular unified theory under examination, though it is reassuring that both X and 

< also enter only to the quarter power and hence the dependence on these quantities 

is weak. This does however have the further implication that E should be very small, 

as we shall shortly see. That a suitable baryon asymmetry can be produced with 
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such a small c indicates that the bubble wall collisions are very efficient in producing 

a baryon asymmetry. A reasonable estimate of < is that it may be of order 10-l 

(recalling t < 1 is the condition both for sufficient inflation and for the thin wail 

approximation to be valid). The parameter ,I should probably be less than of order 1, 

though nothing in principle prevents it from being much smaller; note that a smaller 

X increases the baryon asymmetry as it leads to a less efficient production of entropy, 

though X must also be suflicently large that Higgs particles can be produced in the 

wall collisions. From these arguments, it seems likely that the ratio t/A will be within 

a few orders of magnitude of unity, implying that if this mechanism is to generate 

the appropriate baryon asymmetry E must be of order lo-*. This argument will be 

made tighter below. 

There are constraints that must be satisfied in order for this scenario to work. 

As mentioned at the end of the preceding section, the typical energy of particles 

produced in waU collisions, A-t, should exceed the Higgs mass. (If this does not 

hold, then fa will have an extra suppression. While this may allow a larger s it 

will most likely require some fine tuning of the amount of suppression.) A further 

constraint is that the reheat temperature be less than the Higgs mass in order to 

avoid the Higgs produced in wall collisions reaching a state of thermal equilibrium. 

These two constraints translate into an upper and lower bound for XII (neglecting the 

volume factors and substituting for g. as before) 

X=/a > ,q > - - Ad 0 
114 A~/‘. 

Cleariy suitable v&es of Xa are only possible provided 

% 
0 

w 

1 <X6, (4.3) 

although to allow a range of Xa this bound should be stronger. Although this provides 

a non-trivial constraint on < and X that t < lOOA, it is not a particularly strong one 
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and it leads only to a weak lower bound on E of around 10-s. Hence this ?aryogenesis 

scenario appears satisfactory for a large set of possible model pammete.~,. 

We should discuss more genera: equirr~ ~nrs of the model in order for this type 

of extended inflation scenario to be consid as a sensible candidate for baryogen- 

esis. One important requirement :3 that th ;mmetry breakir do I .~:ad to an 

unacceptable density of relic mono?oles (monopoles being the L-titabie outcome of 

any symmetry breaking from a semi-simple group to the standard model). In several 

theories this can be arranged by creating the monopoles in a pre-inflationary break- 

ing. The monopoles are then subsequently diluted during the intlationary era and 

present no further problems. For example, in a specific model proposed by Olive and 

Turok,rsJ’ SU( 10) is broken in a two-step process 

SO( 10) - SV3) @ SU(2)L @ SU(2)R $3 U(l)&,, 

- SU(3) @ SU(2)r. @ V( l)Y 8 zs, (4.4) 

where the first breaking is through the 45dimensional representation of SO(lO), and 

the second breaking is through the 126dimensional representation.*s In the symmetry 

breaking scheme of Eq. (4.4), monopoles are produced at the first transition, but not 

at the second (existing monopoles are converted rather than new ones formed*‘). 

Hence, in such a picture at least two symmetry breakings are needed to reach the 

standard model, the latter causing both inflation and the out of equilibrium conditions 

required for baryogenesis. It is even possible for this later transition to produce cosmic 

strings as defects ‘1 the intlaton field.s” 

We should aiso comment on the possible role of the baryon-number violating 

anomalous currents in the non-perturbative sector of the electroweak theory. It has 

been conjecturedsr that this anomalous current may cause a “wash-out” of any pre- 

existing baryon asymmetry at temperatures above the electroweak phase transition 
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as the barrier height between sectors of different baryon number may only be around 

10 TeV, and baryon number non-conserving interactions could proceed in thermal 

equilibrium. If these calculations prove correct, then this may destroy any baryon 

asymmetry generated in the wall collisions (this would wash out any primordial baryon 

asymmetry of course, and is not a problem specific to the scenario we are proposing 

here). It has also been proposed that the electroweak phase transition may actually 

create a suitable baryon asymmetry but so far these models have exhibited only 

limited success. ‘The effect of sphalerons may be mitigated if a non-zero value of 

B - L is generated, such as possible with the breaking scheme of Eq. (4.4). 

We should also comment here on the possibility of isothermal perturbations arising 

from the thermalization process. While we have assumed throughout this paper 

that at percolation all the true vacuum hubbies have the same size, the full picture 

is somewhat more complicated, as bubbles formed earlier in inflation wilI grow to 

larger sizes than those formed right at the end. While homogeneity of the microwave 

background requires large bubbles to be suppressed,‘* one would still expect to see 

a range of sizes of small bubbles, and hence spatial variations in the ratio of baryon 

number density to entropy density from point to point. 

In conclusion then, we have seen that the result of the first-order phase transition 

bringing extended intlation to an end is an environment well out of thermal equi- 

librium. In such conditions baryogenesis via the decay of baryon number violating 

Higgs particles can proceed, and we have demonstrated a means by which the baryon 

number can be estimated. The mechanism has further been shown to work for a 

large range of model parameters and to have the capability of predicting a baryon 

asymmetry of the required magnitude. In a second paper, we shall consider a slightly 

different mechanism for baryogenesis in which primordial black holes formed during 

the bubble-wall collisions may play an important role. 
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